Simultaneous Estimation of Metformin and Pioglitazone in Combined Dosage Form

Pranshu tangri*, Dheeraj Chaube and Sayantan Mukopadhyay
GRD (PG) IMT, Department of Pharmacy, Dehrdaun, Uttarakhand, India.

ABSTRACT
The quantitative estimation is the method to determine how much of each constituent is in the sample. Estimation of a given drug or medicine in the dosage forms needs the quantitative analysis of that drug or medicinal in it. The first quantitative analyses were gravimetric, made possible by the invention of a precise balance. It was soon found that carefully calibrated glassware made considerable saving of time through the volumetric measurement of gravimetrically standardized solutions. The current objective of this research work is to establish a rapid, accurate and inexpensive method for the estimation of metformin and pioglitazone in combined dosage form.

Keywords: metformin, pioglitazone, simultaneous, accuracy.

INTRODUCTION
The quantitative estimation is the method to determine how much of each constituent is in the sample. Estimation of a given drug or medicine in the dosage forms needs the quantitative analysis of that drug or medicinal in it. The first quantitative analyses were gravimetric, made possible by the invention of a precise balance. It was soon found that carefully calibrated glassware made considerable saving of time through the volumetric measurement of gravimetrically standardized solutions. Although in recent years, spectrophotometric methods are extensively used, but it would be wrong to conclude that instrumental methods have totally replaced chemical methods. In fact, chemical steps are often an integral part of an instrumental method. The sampling, dissolution, change in oxidation state, removal of excess reagent, pH adjustment, addition of complexing agent, precipitation, concentration and the removal of interferences are the various chemical steps which are part of an instrumental method. In recent years HPLC (High Performance Liquid Chromatography) is extensively used, because HPLC is not limited by sample volatility or thermal stability. HPLC is able to separate macromolecules and ionic species, labile natural products, polymeric material and a wide variety of other high molecular weight poly-functional group because of the relatively high pressure necessary to perform this type of chromatography; a more elaborate experimental setup is required.1,2

Simultaneous equations method
If a sample contains two absorbing drugs (X and Y) each of which absorbs at the max of the other, it may be possible to determine both drugs by the technique of simultaneous equations (Vierordt’s method) provided that certain criteria apply.

The information required is:
(a) The absorptivities of X at 1 and 2, \(a_{x1}\) and \(a_{x2}\) respectively
(b) The absorptivities of Y at 1 and 2, \(a_{y1}\) and \(a_{y2}\) respectively
(c) The absorbance of the diluted sample at 1 and 2, \(A_1\) and \(A_2\) respectively.
Let \(C_x\) and \(C_y\) be the concentrations of X and Y respectively in the diluted sample. Two equations are constructed based upon the fact that at 1 and 2 the absorbance of...
the mixture is the sum of the individual absorbance of X and Y.

At 1 \[A_1 = a_{x1}bc_x + a_{y1}bc_y \] (1)
At 2 \[A_2 = a_{x2}bc_x + a_{y2}bc_y \] (2)

For measurements in 1 cm cells, \(b = 1 \).

Rearranging eq. (2).

\[Cy = A_{2} - ax_{2}c_{x}/ ay_{2} \]

Substituting for \(Cy \) in eq. (1) and rearranging gives

\[C_{y} = A_{1} ax_{1} - ax_{2}c_{x}/ ay_{1} - ax_{1} ay_{2} \] (3)

Modified equations containing a symbol (b) for path-length can be used for application in situations where \(A_1 \) and \(A_2 \) are measured in cells other than 1 cm path-length.

Criteria for obtaining maximum precision, based upon absorbance ratios, have been suggested that place limits on the relative concentrations of the components of the mixture. The criteria are that the ratios

\[\frac{A_{2}/A_{1}}{ax_{2}/ax_{1}} \quad \text{and} \quad \frac{a_{y2}/a_{y1}}{A_{2}/A_{1}} \]

Should lie outside the range 0.1-0.02 for the precise determination of Y and X respectively.

Pioglitazone hydrochloride (PIO) is chemically \[((\pm)-5-[[4-[2-(5-ethyl-2-pyridinyl) ethoxy] phenyl] methyl] -2, 4-]thiazolidinediones monohydrochloride. It is a potent agonist for peroxisome proliferators activated receptor-gamma (PPAR\(\gamma\)), activation of which modulates the transcription of a number of insulin responsive genes involved in the control of glucose and lipid metabolism.

Metformin hydrochloride (MET) is chemically (N, N dimethyl imidodicarbonimidic diamide hydrochloride) is a member of the biguanides of oral antihyperglycemic improves glucose tolerance in patients with type 2 diabetes, lowering both basal and postprandial plasma glucose. Metformin decreases hepatic glucose production, decreases intestinal absorption of glucose and improves insulin sensitivity by increasing peripheral glucose uptake and utilization.

EXPERIMENTAL

Materials: Shimadzu UV-1700 spectrophotometer with spectral band width of 1.8nm, wavelength accuracy of \(\pm 2\)nm & matched quartz cell of 10mm optical path length was used for all spectral & absorbance measurement. All chemicals used were of analytical reagent grade and double distilled water was used to prepare the solvent medium. Pharmaceutical grade MET and PIO procured from Concept pharmaceuticals, Roorkee, India were used as received.

Method: Simultaneous equations method was used i.e. if a sample contains two absorbing drugs (X and Y) each of which absorbs at the max of the other, it may be possible to determine both drugs by the technique of simultaneous equations (Vierordt’s method) provided that certain criteria apply.

Two equations are constructed based upon the fact that at 1 and 2 the absorbance of the mixture is the sum of the individual absorbance of X and Y.

At 1 \[A_1 = a_{x1}bc_x + a_{y1}bc_y \] (1)
At 2 \[A_2 = a_{x2}bc_x + a_{y2}bc_y \] (2)

For measurements in 1 cm cells, \(b = 1 \).

Solvent System

The solvent system was prepared by dissolving the 0.1 N HCl & Dimethyl Formamide in the ratio of 9:1 in a volumetric flask.
Preparation of stock Solution
Pure Drug
Accurately weighted 100mg pure drug of MET & PIO were dissolved in the solvent system in two different 100ml of volumetric flasks. The solution was kept on the sonicator for 15min and then volume was makeup to the 100ml.

Marketed formulation
The average weight of 10 tablets was taken and it was found 0.999mg which contain claim of 500mg MET & 15mg PIO. Accurately weighted 1gm of drug was taken and in a 100 ml of volumetric flask and dissolved by adding a solvent system. The solution was sonicated for 15 min after that the volume was make up to the 100ml by adding the solvent system. The solution was kept overnight because the formulation contains the sustained release METFORMIN. After that the solution was sonicated for 15min and filtered. Now the solution was diluted by serial dilution method to achieve the conc. of MET 50µg/ml & PIO 1.5 µg/ml.

Determination of λmax
From the stock solutions, a working standard was prepared. The absorption spectrum for Pioglitazone was recorded using the concentration of 6µg/ml and it was found to show two absorption maxima at 269nm. For Metformin hydrochloride, the absorption spectrum was recorded using 8µg/ml solution and the maximum absorption was found to be 237nm.(table no. 1)³

Preparation of Standard Curve
The Calibration curves were prepared for PIO and MET in the concentration range of 2-16 µg/ml and 2-16 µg/ml at selected wave Lengths by diluting aliquot portions of stock solution of each drug. The plot of Beer’s law limit is shown in fig no. 1,2.

Simultaneous Estimation
First prepare the dilutions of 2 to 20µg/ml from stock solution of MET & PIO After that take its absorbance at both λmax of PIO & MET respectively. Absorptivity value of both drugs was found by dividing its absorbance value with its concentration as shown in table. The marketed formulation of drug was also subjected at both wavelength of 237nm & 269nm to find out the absorbance.⁵,⁷

RESULTS AND DISCUSSIONS
Amounts of Metformin and Pioglitazone were determined by solving the simultaneous equations.
Two simultaneous equations were formed using absorptivity coefficient values.

A1 = 0.004 x C1 + 0.008 C2 ---------- (1)
A2 = 0.002 x C1 + 0.031C2 --------- (2)

The concentrations of Metformin and Pioglitazone were calculated using following two equations.
C_1 = A_2 a_y_1_– A_1 a_y_2 / a_x_2 a_y_1 – a_x_1 a_y_2 --- (3)
C_2 = A_1 a_x_2 – A_2 a_x_1 / a_x_2 a_y_1 – a_x_1 a_y_2 --- (4)
C_1 = 145.6 X 8 – 211.4 X 31 / 108 --- (2)
C_2 = 211.4 X 2 – 145.6 x 4 / 108

Where C1 and C2 are concentration of Metformin and Pioglitazone respectively in gm/liter in then sample solution, A1 and A2 are the absorbance of the mixture at 237 nm and 269 nm respectively. C1(metformin) was calculated to be 498.89mg while amount of pioglitazone was found out to be 14.77 mg. the accuracy of the method was found out and reported in table no. 2, 3,4.

CONCLUSION
The proposed method was found to be simple, precise, accurate and rapid for simultaneous determination of Metformin and Pioglitazone from pure and in pharmaceutical dosage forms. The solvent system is simple to prepare and economical. The sample recoveries in all
formulations were in good agreement with their respective label claims and they suggested non-interference of formulation excipients in the estimation. Hence, the method can be easily and conveniently adopted for routine analysis of Metformin & Pioglitazone in combined dosage forms and can also be used for dissolution or similar studies.

Table 1: Absorbance of MET & PIO at both λmax 237 & 269 respectively

<table>
<thead>
<tr>
<th>Conc.</th>
<th>Metformin λ max (nm)</th>
<th>Piog λ lit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>237 (nm)</td>
<td>ax1</td>
<td>269 (nm)</td>
</tr>
<tr>
<td>2</td>
<td>0.009</td>
<td>0.0045</td>
<td>0.004</td>
</tr>
<tr>
<td>4</td>
<td>0.018</td>
<td>0.0045</td>
<td>0.010</td>
</tr>
<tr>
<td>6</td>
<td>0.026</td>
<td>0.0043</td>
<td>0.016</td>
</tr>
<tr>
<td>8</td>
<td>0.036</td>
<td>0.0045</td>
<td>0.022</td>
</tr>
<tr>
<td>10</td>
<td>0.044</td>
<td>0.0044</td>
<td>0.028</td>
</tr>
<tr>
<td>12</td>
<td>0.053</td>
<td>0.0044</td>
<td>0.038</td>
</tr>
<tr>
<td>14</td>
<td>0.062</td>
<td>0.0044</td>
<td>0.046</td>
</tr>
<tr>
<td>16</td>
<td>0.074</td>
<td>0.0046</td>
<td>0.058</td>
</tr>
</tbody>
</table>

Table 2: Optical and regression parameters of MET and PIO in 0.1N HCl and DMF in the ratio of (9:1)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MET</th>
<th>PIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>λmax (nm)</td>
<td>237 nm</td>
<td>269 nm</td>
</tr>
<tr>
<td>Beer’s law limit (mg/ml)</td>
<td>2.14</td>
<td>2.10</td>
</tr>
<tr>
<td>R²</td>
<td>0.998</td>
<td>0.979</td>
</tr>
<tr>
<td>Regression equation</td>
<td>y = 0.004x - 0.000</td>
<td>y = 0.003x - 0.003</td>
</tr>
<tr>
<td>slope (b)</td>
<td>0.004</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Table 3: Summary of validation parameters for MET and PIO

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Parameters</th>
<th>MET</th>
<th>PIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Accuracy %</td>
<td>99.46-99.78%</td>
<td>98.46-99.95%</td>
</tr>
<tr>
<td>5.</td>
<td>Limit of detection, mg mL⁻¹</td>
<td>0.412</td>
<td>0.589</td>
</tr>
<tr>
<td>6.</td>
<td>Limit of quantification, mg mL⁻¹</td>
<td>2.5</td>
<td>2.142</td>
</tr>
</tbody>
</table>
Table 4: Summary of estimation of MET & PIO in different brands

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Brand</th>
<th>Labeled amount (mg)</th>
<th>Amount found a (mg)</th>
<th>% of Labeled amount a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pioz-MF</td>
<td>15 (PIO)</td>
<td>14.77 ± 0.029</td>
<td>98.46 ± 0.588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 (MET)</td>
<td>498.89 ± 0.172</td>
<td>99.78 ± 0.343</td>
</tr>
</tbody>
</table>

Fig. 1: Standard curve of Metformin at λmax 237nm

Fig. 2: Standard curve of Pioglitazone at λmax 269nm

REFERENCES
6. Prasad CVN, Saha RN and Parimoo P. Simultaneous determination of Amlodipine- Enalapril Maleate and Amlodipine-Lisinopril in combined tablet